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Introduction

• Idea: connect an existing quantum compiler framework to the
Georgia Tech Research Institute (GTRI) quantum testbed

• Motivation: Current approach is hardware expert–oriented and
requires programming in assembly. Our backend introduces a
more programmer-driven flow for programmers who may not be
hardware experts

• Our contributions:
• New compiler backend that interacts with the low-level testbed
control software

• Show multi-level optimizations: hardware-agnostic level and
hardware-specific level

• Performance evaluation of our backend
• Investigation of the impact of future hardware upgrades
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Background



Ion Trap Quantum Computers

• Ion trap quantum computers
realize qubits by
manipulating spin of trapped
ions using electromagnetic
radiation (e.g., lasers,
microwaves)

• We consider two popular
native gates on ion trap
systems:

• The single-qubit gate Rϕ(θ):
A rotation of θ around the
angle ϕ in the X-Y plane of
the Bloch sphere

• The two-qubit entangling
gate XX(α): can perform a
CNOT when combined with
a few single-qubit gates

An early IonQ machine [1]:
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GTRI Quantum Testbed

• The CIPHER Quantum Systems Division at
Georgia Tech Research Institute (GTRI) has a
quantum testbed based on an ion trap

• Original 2016 configuration [3] (right) could
only target two ions (qubits)
simultaneously, but this has been upgraded
to allow single-qubit addressing

• Native operations: Rϕ(π/2) and XX(π/4)
• Rudimentary compiler exists for
decomposing quantum assembly into a
sequence of these operations

• Control software also contains an ideal
simulator originally used in calibration

• Currently repurposed for domain-specific
computations based on global
operations [7]

GTRI testbed apparatus as
of 2016 [3]:
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QCOR

• QCOR: specification for
compiler framework intended
for heterogeneous
quantum–classical algorithms
on near-term hardware

• QCOR implementation:
• Uses Clang syntax handler
to allow running quantum
circuits inline in C++ code
(right)

• Behind the scenes, uses the
lower-level XACC compiler
framework

• We add a GTRI compiler
backend to XACC, which
surfaces it on the QCOR
level

QCOR C++ program which generates and
measures the GHZ state
1√
2 |00 · · · 0⟩+

1√
2 |11 · · · 1⟩:

__qpu__ void ghz(qreg q) {
H(q[0]);
for (int i = 1; i < q.size(); i++)

CNOT(q[i-1], q[i]);
Measure(q);

}

int main(int argc, char **argv) {
auto q = qalloc(atoi(argv[1]));
ghz(q);
q.print();

}
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Compiler Backend Design



Backend Implementation

• Our XACC backend for the GTRI testbed takes XACC IR as input
and:
1. Runs an IR transformation for two-qubit gates
2. Runs another IR transformation for single-qubit gates
3. Writes a sequence (or table) of primitive operations to a file in a
directory polled by the control software

4. Parses simulation result written by control software and returns
measurements
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Two-Qubit Gate Compiler Pass

1. Decompose two-qubit gates in XACC IR into combinations of
CNOT and single-qubit gates. For example,

⇒
Z H H

2. Decompose CNOTs into XX(π/4) native gates and single-qubit
gates:

⇒
Ry(−π/2)

XX(π/4)
Ry(π/2) Rz(π/2)

Rx(π/2)
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Single-Qubit Gate Compiler Pass

• Find adjacent single-qubit gates and multiply them together to
get a goal unitary G

• Need to decompose G into the product of Rϕ(π/2) gates
• For example, up to a global phase,
H = XRy(π/2) = R0(π)Rπ/2(π/2) = R0(π/2)R0(π/2)Rπ/2(π/2), so

H ⇒ Rπ/2(π/2) R0(π/2) R0(π/2)

• Use numerical optimizer to find the ϕ angles
• Start with 1 rotation and keep adding rotations until we get a
sufficiently close decomposition

• In our experiments, the maximum needed is 4 rotations
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Single-Qubit Decomposition up to an X-Rotation

• We can ask the optimizer for a different decomposition in
different situations

• Fun fact: XX commutes with X-rotations
• So when G ends at an XX gate, we can ask for a decomposition
up to an X-rotation, and commute that final Rx(θ) to the other
side of the XX. Example:

H
XX(π/4) ⇒

Ry(π/2) X
XX(π/4)

⇒
Ry(π/2)

XX(π/4)
X

⇒
Rπ/2(π/2)

XX(π/4)
X

• Deal with the Rx(θ) in a later iteration
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Single-Qubit Decomposition up to a Z-Rotation

• Z-rotations do not change measurement outcomes when
measuring in the |0⟩ / |1⟩ basis

• When the gates to decompose end at a measurement, we can
ask optimizer for a decomposition up to a Z-rotation (Rz(θ) gate)

• Example using H = ZRy(−π/2):
|0⟩/|1⟩ |0⟩/|1⟩

H ⇒ Ry(−π/2) Z

|0⟩/|1⟩ |0⟩/|1⟩
⇒ Ry(−π/2) ⇒ R−π/2(π/2)

• Can discard the ending Rz(θ)
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Single-Qubit Decomposition from a Z-Rotation

• Up to a global phase, Rz(θ) |0⟩ = |0⟩
• So when the gates start at the beginning of the circuit, we can
ask the optimizer for a decomposition starting with a Z-rotation

• Example using Y = XZ (up to a global phase):
|0⟩ Y

XX(π/4) ⇒
Z X

XX(π/4)
|0⟩

⇒
X

XX(π/4) ⇒ XX(π/4)
X

• Discard the leading Rz(θ)
• Can combine with the previous two optimizations!
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Single-Qubit Gate Compiler Pass: Two More Optimizations

Can skip the optimizer entirely in two situations:

1. If G is closer than the configured threshold to identity, we
discard the sequence of gates. For example:

X X ⇒

2. If the sequence of gates ends with the end of the circuit, without
a measurement, then we can safely discard the gates without
affecting measurement outcomes the programmer cares about:

XX(π/4) ⇒ XX(π/4)
H
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Future Hardware Upgrades

What if the GTRI testbed had a tightly-focused beam for each ion as
demonstrated by IonQ [2]? We consider the following two benefits:

1. All-to-all connectivity: Can reduce number of SWAP gates
needed to execute logical circuit on linear chain of ions (qubits)

• Easy: QCOR handles qubit placement, so have our Accelerator
tell QCOR we have full connectivity instead of linear

Q0 Q1 Q2 ⇒ Q0

Q1

Q2

2. Parallel single-qubit operations: Execute multiple Rϕ(π/2) gates
across different qubits in the same “cycle”

• We use a greedy algorithm that takes resulting IR from two
compiler passes and builds a table of native operations

• Example for the Bell state circuit H 0; CNOT 0,1:
Operation Ion ϕ

XX(π/4) 0,1
Rϕ(π/2) 0 π/2
Rϕ(π/2) 1 0

⇒
Operation Ion 1 ϕ1 Ion 2 ϕ2
XX(π/4) 0,1
Rϕ(π/2) 0 π/2 1 0
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Experiments and Discussion



Evaluation

• Physical testbed hardware has been repurposed for
domain-specific computations based on global operations, so
we cannot test on hardware

• Instead, we:
1. Validate results using the simulator already included in the control
software

2. Roughly estimate fidelity by counting native operations
• Benchmark QCOR programs on three-qubit programs:

• GHZ, which generates the state 1√
2 |000⟩+

1√
2 |111⟩

• Bernstein-Vazirani with secret string s = 11
• Grover with one iteration and marked states |101⟩ and |110⟩
• Quantum Fourier Transform using the qft() QCOR routine
• VQE (Variational Quantum Eigensolver) on a three-qubit
Hamiltonian using the QCOR tooling for VQE
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Validation Results

• We compare probability distribution of measurements based on
the final state vectors produced by our backend and the existing
Quantum++ simulator backend.

• Why not compare final state vectors?
• By design, the single-qubit pass will produce different final states,
even considering global phase. Example: for Bernstein–Vazirani,
our compiler discards a trailing Hadamard on the ancilla qubit, so
the final state becomes 1√

2 |110⟩ −
1√
2 |111⟩ rather than |111⟩

• The programmer measures only the other two qubits, so no
observable difference
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Gate Count Reduction

As expected, we saw no reduction in XX(π/4). For Rϕ(π/2) gates, we
saw an average of 1.52× reduction:
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XX(π/4) Gate Count Reduction: Hardware Upgrades

Full connectivity showed a 2.40× reduction in XX(π/4) native
operations:
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Rϕ(π/2) Gate Count Reduction: Hardware Upgrades

Together, full connectivity and parallel operations showed a 6.13×
reduction in Rϕ(π/2) native operations:
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Adaption to Other Hardware

• The XX(α) and Rϕ(θ) are common native gates for ion trap
hardware

• See: IonQ hardware [1], Sandia QSCOUT testbed [4]
• But does other hardware restrict the θ angle in Rϕ(θ)?

• Aforementioned hardware does not, but it’s not an uncommon
choice. For example, the 2021 Honeywell machine limits θ to π or
π/2 [6]

• Adjusting our optimizer-based decomposition for these machines
would be straightforward

• What about hardware with only global operations? (E.g., the
current configuration of the GTRI testbed)

• Possible with XACC, but our current backend is not totally
compatible

• However, any hardware programmed with a typical quantum
gateset will benefit from existing high-level optimizations in
QCOR [5]
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Future Work

• Run this on actual hardware!
• Consider parallel two-qubit gates [2], non-Rϕ(π/2) operations,
make decompositions consider parallelism

• What about different hardware, like the 2021 Honeywell QCCD
machine? Or TILT hardware? [6, 8]
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Thank you!

• QCOR website: https://qcor.ornl.gov/
• Backend source code:
https://github.com/ausbin/xacc/tree/ion-trap-backend/
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