
Enabling a Programming Environment for an
Experimental Ion Trap Quantum Testbed

Austin Adams, Elton Pinto, Jeffrey Young, Creston Herold, Alex McCaskey,
Eugene Dumitrescu, Thomas M. Conte
ICRC 2021
November 30th, 2021

Georgia Tech

Introduction

• Idea: connect an existing quantum compiler framework to the
Georgia Tech Research Institute (GTRI) quantum testbed

• Motivation: Current approach is hardware expert–oriented and
requires programming in assembly. Our backend introduces a
more programmer-driven flow for programmers who may not be
hardware experts

• Our contributions:
• New compiler backend that interacts with the low-level testbed
control software

• Show multi-level optimizations: hardware-agnostic level and
hardware-specific level

• Performance evaluation of our backend
• Investigation of the impact of future hardware upgrades

1

Background

Ion Trap Quantum Computers

• Ion trap quantum computers
realize qubits by
manipulating spin of trapped
ions using electromagnetic
radiation (e.g., lasers,
microwaves)

• We consider two popular
native gates on ion trap
systems:

• The single-qubit gate Rϕ(θ):
A rotation of θ around the
angle ϕ in the X-Y plane of
the Bloch sphere

• The two-qubit entangling
gate XX(α): can perform a
CNOT when combined with
a few single-qubit gates

An early IonQ machine [1]:

2

GTRI Quantum Testbed

• The CIPHER Quantum Systems Division at
Georgia Tech Research Institute (GTRI) has a
quantum testbed based on an ion trap

• Original 2016 configuration [3] (right) could
only target two ions (qubits)
simultaneously, but this has been upgraded
to allow single-qubit addressing

• Native operations: Rϕ(π/2) and XX(π/4)
• Rudimentary compiler exists for
decomposing quantum assembly into a
sequence of these operations

• Control software also contains an ideal
simulator originally used in calibration

• Currently repurposed for domain-specific
computations based on global
operations [7]

GTRI testbed apparatus as
of 2016 [3]:

3

QCOR

• QCOR: specification for
compiler framework intended
for heterogeneous
quantum–classical algorithms
on near-term hardware

• QCOR implementation:
• Uses Clang syntax handler
to allow running quantum
circuits inline in C++ code
(right)

• Behind the scenes, uses the
lower-level XACC compiler
framework

• We add a GTRI compiler
backend to XACC, which
surfaces it on the QCOR
level

QCOR C++ program which generates and
measures the GHZ state
1√
2 |00 · · · 0⟩+

1√
2 |11 · · · 1⟩:

__qpu__ void ghz(qreg q) {
H(q[0]);
for (int i = 1; i < q.size(); i++)

CNOT(q[i-1], q[i]);
Measure(q);

}

int main(int argc, char **argv) {
auto q = qalloc(atoi(argv[1]));
ghz(q);
q.print();

}

4

Compiler Backend Design

Backend Implementation

• Our XACC backend for the GTRI testbed takes XACC IR as input
and:
1. Runs an IR transformation for two-qubit gates
2. Runs another IR transformation for single-qubit gates
3. Writes a sequence (or table) of primitive operations to a file in a
directory polled by the control software

4. Parses simulation result written by control software and returns
measurements

5

Two-Qubit Gate Compiler Pass

1. Decompose two-qubit gates in XACC IR into combinations of
CNOT and single-qubit gates. For example,

⇒
Z H H

2. Decompose CNOTs into XX(π/4) native gates and single-qubit
gates:

⇒
Ry(−π/2)

XX(π/4)
Ry(π/2) Rz(π/2)

Rx(π/2)

6

Single-Qubit Gate Compiler Pass

• Find adjacent single-qubit gates and multiply them together to
get a goal unitary G

• Need to decompose G into the product of Rϕ(π/2) gates
• For example, up to a global phase,
H = XRy(π/2) = R0(π)Rπ/2(π/2) = R0(π/2)R0(π/2)Rπ/2(π/2), so

H ⇒ Rπ/2(π/2) R0(π/2) R0(π/2)

• Use numerical optimizer to find the ϕ angles
• Start with 1 rotation and keep adding rotations until we get a
sufficiently close decomposition

• In our experiments, the maximum needed is 4 rotations

7

Single-Qubit Decomposition up to an X-Rotation

• We can ask the optimizer for a different decomposition in
different situations

• Fun fact: XX commutes with X-rotations
• So when G ends at an XX gate, we can ask for a decomposition
up to an X-rotation, and commute that final Rx(θ) to the other
side of the XX. Example:

H
XX(π/4) ⇒

Ry(π/2) X
XX(π/4)

⇒
Ry(π/2)

XX(π/4)
X

⇒
Rπ/2(π/2)

XX(π/4)
X

• Deal with the Rx(θ) in a later iteration

8

Single-Qubit Decomposition up to a Z-Rotation

• Z-rotations do not change measurement outcomes when
measuring in the |0⟩ / |1⟩ basis

• When the gates to decompose end at a measurement, we can
ask optimizer for a decomposition up to a Z-rotation (Rz(θ) gate)

• Example using H = ZRy(−π/2):
|0⟩/|1⟩ |0⟩/|1⟩

H ⇒ Ry(−π/2) Z

|0⟩/|1⟩ |0⟩/|1⟩
⇒ Ry(−π/2) ⇒ R−π/2(π/2)

• Can discard the ending Rz(θ)

9

Single-Qubit Decomposition from a Z-Rotation

• Up to a global phase, Rz(θ) |0⟩ = |0⟩
• So when the gates start at the beginning of the circuit, we can
ask the optimizer for a decomposition starting with a Z-rotation

• Example using Y = XZ (up to a global phase):
|0⟩ Y

XX(π/4) ⇒
Z X

XX(π/4)
|0⟩

⇒
X

XX(π/4) ⇒ XX(π/4)
X

• Discard the leading Rz(θ)
• Can combine with the previous two optimizations!

10

Single-Qubit Gate Compiler Pass: Two More Optimizations

Can skip the optimizer entirely in two situations:

1. If G is closer than the configured threshold to identity, we
discard the sequence of gates. For example:

X X ⇒

2. If the sequence of gates ends with the end of the circuit, without
a measurement, then we can safely discard the gates without
affecting measurement outcomes the programmer cares about:

XX(π/4) ⇒ XX(π/4)
H

11

Future Hardware Upgrades

What if the GTRI testbed had a tightly-focused beam for each ion as
demonstrated by IonQ [2]? We consider the following two benefits:

1. All-to-all connectivity: Can reduce number of SWAP gates
needed to execute logical circuit on linear chain of ions (qubits)

• Easy: QCOR handles qubit placement, so have our Accelerator
tell QCOR we have full connectivity instead of linear

Q0 Q1 Q2 ⇒ Q0

Q1

Q2

2. Parallel single-qubit operations: Execute multiple Rϕ(π/2) gates
across different qubits in the same “cycle”

• We use a greedy algorithm that takes resulting IR from two
compiler passes and builds a table of native operations

• Example for the Bell state circuit H 0; CNOT 0,1:
Operation Ion ϕ

XX(π/4) 0,1
Rϕ(π/2) 0 π/2
Rϕ(π/2) 1 0

⇒
Operation Ion 1 ϕ1 Ion 2 ϕ2
XX(π/4) 0,1
Rϕ(π/2) 0 π/2 1 0

12

Experiments and Discussion

Evaluation

• Physical testbed hardware has been repurposed for
domain-specific computations based on global operations, so
we cannot test on hardware

• Instead, we:
1. Validate results using the simulator already included in the control
software

2. Roughly estimate fidelity by counting native operations
• Benchmark QCOR programs on three-qubit programs:

• GHZ, which generates the state 1√
2 |000⟩+

1√
2 |111⟩

• Bernstein-Vazirani with secret string s = 11
• Grover with one iteration and marked states |101⟩ and |110⟩
• Quantum Fourier Transform using the qft() QCOR routine
• VQE (Variational Quantum Eigensolver) on a three-qubit
Hamiltonian using the QCOR tooling for VQE

13

Validation Results

• We compare probability distribution of measurements based on
the final state vectors produced by our backend and the existing
Quantum++ simulator backend.

• Why not compare final state vectors?
• By design, the single-qubit pass will produce different final states,
even considering global phase. Example: for Bernstein–Vazirani,
our compiler discards a trailing Hadamard on the ancilla qubit, so
the final state becomes 1√

2 |110⟩ −
1√
2 |111⟩ rather than |111⟩

• The programmer measures only the other two qubits, so no
observable difference

14

Gate Count Reduction

As expected, we saw no reduction in XX(π/4). For Rϕ(π/2) gates, we
saw an average of 1.52× reduction:

GHZ BV Grover QFT VQE Average
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0.
82 0.
91 0.
99 1.
00

0.
92 0.
931.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
75 0.
80 0.
94

0.
90

0.
81 0.
84

0.
75 0.
85 0.
94

0.
90

0.
85

0.
861.
00

1.
00

0.
94

0.
91

0.
86 0.
941.
00

0.
91 0.
96

0.
94

0.
89 0.
94

0.
90

1.
22

1.
40

1.
15

1.
15 1.
16

1.
80

1.
56

1.
39

1.
25

1.
62

1.
52

Old Compiler: No Opt. Old Compiler: RZ Opt. Ours: No Opt.
Ours: Only Trailing Opt. Ours: Only from RZ Opt. Ours: Only Up to RZ Opt.
Ours: Only RX Opt. Ours: All Opt.

Benchmark

R ϕ
(π

/
2)
Ga
te
Re
du
ct
io
n

15

XX(π/4) Gate Count Reduction: Hardware Upgrades

Full connectivity showed a 2.40× reduction in XX(π/4) native
operations:

GHZ BV Grover QFT VQE Average
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

4.
00

2.
50

2.
00

2.
50

2.
40

Old Compiler Our Compiler
HW Upgrade: Fully Conn.

Benchmark

XX
(π

/
4)
Co
un
tR
ed
uc
tio
n

16

Rϕ(π/2) Gate Count Reduction: Hardware Upgrades

Together, full connectivity and parallel operations showed a 6.13×
reduction in Rϕ(π/2) native operations:

GHZ BV Grover QFT VQE Average
0

2

4

6

8

10

12

14
1.
00

1.
00

1.
00

1.
00

1.
00

1.
001.
80

1.
56

1.
39

1.
25 1.
62

1.
523.

00

2.
29

2.
22

2.
13 2.
37

2.
40

1.
80

13
.0
0

4.
29

2.
93 3.
73 5.
15

3.
00

13
.0
0

5.
32

4.
05 5.
26 6.
13

Old Compiler
Our Compiler
HW Upgrade: Parallel 1Q Ops
HW Upgrade: Fully Conn.
HW Upgrade: Both

Benchmark

R ϕ
(π

/
2)
Cy
cl
e
Re
du
ct
io
n

17

Adaption to Other Hardware

• The XX(α) and Rϕ(θ) are common native gates for ion trap
hardware

• See: IonQ hardware [1], Sandia QSCOUT testbed [4]
• But does other hardware restrict the θ angle in Rϕ(θ)?

• Aforementioned hardware does not, but it’s not an uncommon
choice. For example, the 2021 Honeywell machine limits θ to π or
π/2 [6]

• Adjusting our optimizer-based decomposition for these machines
would be straightforward

• What about hardware with only global operations? (E.g., the
current configuration of the GTRI testbed)

• Possible with XACC, but our current backend is not totally
compatible

• However, any hardware programmed with a typical quantum
gateset will benefit from existing high-level optimizations in
QCOR [5]

18

Future Work

• Run this on actual hardware!
• Consider parallel two-qubit gates [2], non-Rϕ(π/2) operations,
make decompositions consider parallelism

• What about different hardware, like the 2021 Honeywell QCCD
machine? Or TILT hardware? [6, 8]

19

Thank you!

• QCOR website: https://qcor.ornl.gov/
• Backend source code:
https://github.com/ausbin/xacc/tree/ion-trap-backend/

19

https://qcor.ornl.gov/
https://github.com/ausbin/xacc/tree/ion-trap-backend/

References i

S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and
C. Monroe.
Demonstration of a small programmable quantum computer
with atomic qubits.
Nature, 536(7614):63–66, Aug. 2016.
Number: 7614 Publisher: Nature Publishing Group.

C. Figgatt, A. Ostrander, N. M. Linke, K. A. Landsman, D. Zhu,
D. Maslov, and C. Monroe.
Parallel entangling operations on a universal ion-trap quantum
computer.
Nature, 572(7769):368–372, Aug. 2019.

20

References ii

C. D. Herold, S. D. Fallek, J. T. Merrill, A. M. Meier, K. R. Brown, C. E.
Volin, and J. M. Amini.
Universal control of ion qubits in a scalable microfabricated
planar trap.
New Journal of Physics, 18(2):023048, Feb. 2016.
Publisher: IOP Publishing.

B. C. A. Morrison, A. J. Landahl, D. S. Lobser, K. M. Rudinger, A. E.
Russo, J. W. Van Der Wall, and P. Maunz.
Just Another Quantum Assembly Language (Jaqal).
In 2020 IEEE International Conference on Quantum Computing
and Engineering (QCE), pages 402–408, Oct. 2020.

21

References iii

T. Nguyen, A. Santana, T. Kharazi, D. Claudino, H. Finkel, and
A. McCaskey.
Extending C++ for Heterogeneous Quantum-Classical
Computing.
arXiv:2010.03935 [quant-ph], Oct. 2020.
arXiv: 2010.03935.

J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. S.
Allman, C. H. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer,
C. Ryan-Anderson, and B. Neyenhuis.
Demonstration of the trapped-ion quantum CCD computer
architecture.
Nature, 592(7853):209–213, Apr. 2021.

22

References iv

J. Rajakumar, J. Moondra, S. Gupta, and C. D. Herold.
Generating Target Graph Couplings for QAOA from Native
Quantum Hardware Couplings.
arXiv:2011.08165 [physics, physics:quant-ph], Nov. 2020.
arXiv: 2011.08165.

X.-C. Wu, D. M. Debroy, Y. Ding, J. M. Baker, Y. Alexeev, K. R. Brown,
and F. T. Chong.
TILT: Achieving Higher Fidelity on a Trapped-Ion Linear-Tape
Quantum Computing Architecture.
In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 153–166, Feb. 2021.
ISSN: 2378-203X.

23

	Background
	Compiler Backend Design
	Experiments and Discussion

