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Motivation

• Our goal: hardware-accelerate SHA-256 and AES-256 in a GPGPU
• Why? Highly parallel cryptography can be useful

• For SHA, useful for finding collisions / cryptanalysis
• For AES, parallelize decryption of huge amounts of data, e.g.
full-disk encryption

• Example hypothetical combined use case: file server that encrypts
responses with AES and uses SHA for integrity checks
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Background and Related Work



Secure Hash Algorithm 2 (SHA-2)

• Family of algorithms that produce a digest (hash) for an input
message

• But we focus on SHA-256:
• Secure hashing algorithm that takes a message and produces a
256-bit digest (or hash)

• SHA-256 uses the following sigma functions ∼64 times apiece
for every 512-bit message block (ROTR is a right bit rotation, SHR
is a right bitshift) [12]:

Σ0(x) = ROTR2(x)⊕ ROTR13(x)⊕ ROTR22(x) (1)
Σ1(x) = ROTR6(x)⊕ ROTR11(x)⊕ ROTR25(x) (2)
σ0(x) = ROTR7(x)⊕ ROTR18(x)⊕ SHR3(x) (3)
σ1(x) = ROTR17(x)⊕ ROTR19(x)⊕ SHR10(x) (4)
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Advanced Encryption Standard (AES)

• AES is a symmetric block cipher
• The input, output, and current state in AES are 16 bytes
organized as a 4×4 column major matrix:

b0 b4 b8 b12
b1 b5 b9 b13
b2 b6 b10 b14
b3 b7 b11 b15

• Multiple supported key sizes, but we focus on a 256-bit key,
known as AES-256

• In AES-256, 14 rounds of operations on the 16-byte state
• “Key expansion” uses the provided key to generate a key
schedule with a different key for each column for each round

• Reused across cipher invocations for the same key [6]
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AES-256 Cipher

The core of the AES-256 cipher looks like this [6]:

for round = 1 to 14:
SubBytes(state)
ShiftRows(state)
if round < 14:

MixColumns(state)
AddRoundKey(state, keysched[round])

end for

• SubBytes: Replace each byte according to the S-Box, a
predefined substitution table

• ShiftRows: Left-rotate the bytes in each row of the state,
increasing the offset as we go down

• MixColumns: “Mix” together entries in a column by performing
shifts and XORs

• AddRoundKey: XOR each column with key in the key schedule
corresponding to the round and column 4



AES: T-Table Implementation

Daemen and Rijmen showed you can compute a round of AES
(except AddRoundKey) using lookups into four tables, each 4 KiB [5].
For AES-256:

b0,j
b1,j
b2,j
b3,j

 = T0[a0,j] + T1[a1,j+1 mod 4] + T2[a2,j+2 mod 4] + T3[a3,j+3 mod 4]

for each column 0 ≤ j < 4, where ai,j and bi,j are the bytes in the old
and almost-new state respectively (still need to perform
AddRoundKey). Moreover, rotating the result from T0 yields the
result of an effective lookup to T1, T2, T3.
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AES Cipher Modes

• We implement 3 popular block cipher modes for AES-256 [14]:
• Electronic Code Book (ECB) - trivial, easiest to parallelize,
vulnerable to pattern/replay attacks

• Cipher Block Chaining (CBC) - less vulnerable, but encryption is
serialized (not decryption)

• Counter (CTR) - easier to manipulate plaintext than CBC, but also
easier to parallelize

[8]
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Related Work with Cryptography on GPUs, RISC-V

• GPUs for crypto:
• First attempt: Cook et al. used the graphics pipeline on a classic
GPU to accelerate the S-Box and XORs in AES, but could not beat
CPU performance [4]

• After CUDA release, Manavski wrote a CUDA kernel that beat AES
performance on a CPU by 20× [10]

• Today, a major use case of SHA-256 (and other hash functions) on
GPUs is mining cryptocurrency [1, 9]

• Crypto accelerating RISC-V:
• Saarinen proposed an RISC-V ISA extension for AES that effectively
computes T-table entries at runtime [13], which Marshall et al.
recommended for 32-bit RISC-V over other proposals [11]

• The draft RISC-V cryptography extension now specifies instructions
for gathering entropy, SM3, SM4, SHA-2, AES, and some bitwise
instructions from “Bitmanip,” another draft specification [15, 2].

• We implemented a subset of this specification: instructions for
SHA-256 and AES-256, plus a bit rotation instruction
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Draft RISC-V Cryptography Extensions Specification

Relevant instructions in draft RISC-V cryptography specification:

• SHA-256:
• sha256sum0 rd, rs1: Performs rd← Σ0(rs1)
• sha256sum1 rd, rs1: Performs rd← Σ1(rs1)
• sha256sig0 rd, rs1: Performs rd← σ0(rs1)
• sha256sig1 rd, rs1: Performs rd← σ1(rs1)

• AES-256:
• aes32esi rt, rs2, bs: Uses S-Box on byte bs of r2 and XORs
result into rt. Running 16 times will effect SubBytes; choosing
registers carefully causes ShiftRows; and loading round key into
register beforehand achieves AddRoundKey

• aes32esmi rt, rs2, bs: Performs aes32esi plus
MixColumns

• aes32dsi rt, rs2, bs: Inverse aes32esi, for decryption
• aes32dsmi rt, rs2, bs: Inverse aes32esmi, for decryption

• Bit manipulation:
• rori rd, rs1, imm: Rotate bits in rs1 right by immediate and
store in rd 8



Vortex

Vortex is an open-source GPGPU that supports RV32IMF [7].
Microarchitecture:
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Implementation



Hardware Diagram
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Hardware Implementation

• We add crypto execution unit
to handle all new instructions
and connect to rest of
pipeline

• Use lightweight
implementation of S-Box
logic proposed by Boyar and
Peralta [3]

• Forward S-Box is 128 gates,
16 deep [3]

• Based on draft crypto spec
reference implementation,
but pipelined to avoid
stretching cycle time

• Programmed onto an Arria 10
FPGA, generally maintaining
original clock frequency 11



Software Implementation: SHA-256

• We implement three different SHA-256 kernels for Vortex:
1. “Software”: Pure C implementation based on a naïve reading of the
SHA-2 specification [12]

2. “Hybrid”: Same as software, except with rori used for rotations in
software Σ0,Σ1, σ0, σ1 functions

3. “Native”: Same as software, except using sha256sum0,
sha256sum1, sha256sig0, sha256sig1 instructions for
Σ0,Σ1, σ0, σ1 functions

• Each evenly spreads 1MiB of CPU-generated pseudorandom
data across all available threads
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Software Implementation: AES-256

• We implement three different Vortex kernels for AES-256 key
schedule generation:
1. “Software”: Pure C implementation based on a naïve reading of the
AES specification [6]

2. “Hybrid”: Same as software, except with rori used for the 7 calls
to RotWord made in key schedule generation

3. “Native”: Same as software, except using aes32esi and
aes32dsmi to perform the 13 InvMixColumns calls needed in
key schedule generation for the equivalent inverse cipher

4. “Native+Hybrid”: Both hybrid and native combined
• We implement two different Vortex kernels for the AES-256
cipher:
1. “Software“: Pure C implementation using a T-tables strategy [5]
2. “Native”: Same as software except that each cipher round uses the

aes32esi, aes32esmi, aes32dsi, and aes32dsmi instructions
• The cipher kernel spreads 2MiB of CPU-generated
pseudorandom data across all available threads (except CBC
encryption, which is serialized) 13



Evaluation

• We ran each kernel on an Arria 10 GX 1150 FPGA against
pseudorandom data and collected cycle counts

• The kernels ran on 16 Vortex cores, each with 4 warps of 4
threads, meaning a total of 256 threads
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SHA-256 Results

• 256 threads hashing 512 total
messages, each of size 2 KiB, in
parallel. Total 1MiB

• Hybrid (rori) yields 1.25× speedup
• Native (sigma instructions) yields
1.60× speedup

SHA-256 Cycle Count
Speedup
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AES-256 Key Expansion Results

• 1 thread performing key
expansion on the 256-bit key

• Native shows the only
meaningful speedup, with
3.73× for Native and 4.09×
for Native+Hybrid

• Likely because of the
expensive InvMixColumns
invocations needed for key
schedule generation with
the equivalent inverse
cipher [6]

AES-256 Key Expansion Cycle Speedup
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AES-256 Cipher Results

• 256 threads hashing 8192
total 16-byte blocks in
parallel. Total 2MiB

• CBC gets 7.02× speedup for
encryption; however, the total
runtime is 125.7 to 161.3 times
longer than ECB encryption
(not shown)

• However, CTR sees 5.19× and
5.49× for encryption and
decryption, respectively, while
maintaining a similar runtime

AES-256 Cipher Cycle Count
Speedup
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Physical Characteristics

We largely maintain the clock frequency of the original Vortex,
although we see more divergence with larger core counts:

Configuration Core(s) Area Usage (%) Frequency (MHz)

Baseline 1 12.86 220
+ Crypto Unit 1 13.12 218

Baseline 4 26.48 213
+ Crypto Unit 4 27.82 208

Baseline 16 80.24 192
+ Crypto Unit 16 85.78 177

We believe this may be due to synthesis or place and route issues
that future work can resolve.
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Implementation Recommendations

• Implementing the entire
crypto draft specification may
be too expensive on a GPU;
however selectively
implementing instructions
can yield great results

• Even with an AES-accelerated
Vortex with only 4 cores, we
see a 1.42× speedup over the
original Vortex running the
software implementation on
16 cores

Estimated Speedup for AES-256 CTR Encrypt
over 16 Original Cores versus Number of

Crypto-Accelerated Cores
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Future Work

Future work should:

• Compare performance with other GPGPUs and CPUs, with and
without native instructions

• Consider more advanced software implementations, which may
reduce speedup

• Determine if our work is vulnerable to timing attacks
• Analyze the impact on our design on the 15nm Vortex chip
described in the Vortex paper [7]
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Thank you!
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