
Cryptography Acceleration in a RISC-V GPGPU

Austin Adams, Pulkit Gupta, Blaise Tine, Hyesoon Kim
CARRV 2021
June 17th, 2021

Georgia Tech



Motivation

• Our goal: hardware-accelerate SHA-256 and AES-256 in a GPGPU
• Why? Highly parallel cryptography can be useful

• For SHA, useful for finding collisions / cryptanalysis
• For AES, parallelize decryption of huge amounts of data, e.g.
full-disk encryption

• Example hypothetical combined use case: file server that encrypts
responses with AES and uses SHA for integrity checks

1



Background and Related Work



Secure Hash Algorithm 2 (SHA-2)

• Family of algorithms that produce a digest (hash) for an input
message

• But we focus on SHA-256:
• Secure hashing algorithm that takes a message and produces a
256-bit digest (or hash)

• SHA-256 uses the following sigma functions ∼64 times apiece
for every 512-bit message block (ROTR is a right bit rotation, SHR
is a right bitshift) [12]:

Σ0(x) = ROTR2(x)⊕ ROTR13(x)⊕ ROTR22(x) (1)
Σ1(x) = ROTR6(x)⊕ ROTR11(x)⊕ ROTR25(x) (2)
σ0(x) = ROTR7(x)⊕ ROTR18(x)⊕ SHR3(x) (3)
σ1(x) = ROTR17(x)⊕ ROTR19(x)⊕ SHR10(x) (4)

2



Advanced Encryption Standard (AES)

• AES is a symmetric block cipher
• The input, output, and current state in AES are 16 bytes
organized as a 4×4 column major matrix:

b0 b4 b8 b12
b1 b5 b9 b13
b2 b6 b10 b14
b3 b7 b11 b15

• Multiple supported key sizes, but we focus on a 256-bit key,
known as AES-256

• In AES-256, 14 rounds of operations on the 16-byte state
• “Key expansion” uses the provided key to generate a key
schedule with a different key for each column for each round

• Reused across cipher invocations for the same key [6]

3



AES-256 Cipher

The core of the AES-256 cipher looks like this [6]:

for round = 1 to 14:
SubBytes(state)
ShiftRows(state)
if round < 14:

MixColumns(state)
AddRoundKey(state, keysched[round])

end for

• SubBytes: Replace each byte according to the S-Box, a
predefined substitution table

• ShiftRows: Left-rotate the bytes in each row of the state,
increasing the offset as we go down

• MixColumns: “Mix” together entries in a column by performing
shifts and XORs

• AddRoundKey: XOR each column with key in the key schedule
corresponding to the round and column 4



AES: T-Table Implementation

Daemen and Rijmen showed you can compute a round of AES
(except AddRoundKey) using lookups into four tables, each 4 KiB [5].
For AES-256:

b0,j
b1,j
b2,j
b3,j

 = T0[a0,j] + T1[a1,j+1 mod 4] + T2[a2,j+2 mod 4] + T3[a3,j+3 mod 4]

for each column 0 ≤ j < 4, where ai,j and bi,j are the bytes in the old
and almost-new state respectively (still need to perform
AddRoundKey). Moreover, rotating the result from T0 yields the
result of an effective lookup to T1, T2, T3.

5



AES Cipher Modes

• We implement 3 popular block cipher modes for AES-256 [14]:
• Electronic Code Book (ECB) - trivial, easiest to parallelize,
vulnerable to pattern/replay attacks

• Cipher Block Chaining (CBC) - less vulnerable, but encryption is
serialized (not decryption)

• Counter (CTR) - easier to manipulate plaintext than CBC, but also
easier to parallelize

[8]

6



Related Work with Cryptography on GPUs, RISC-V

• GPUs for crypto:
• First attempt: Cook et al. used the graphics pipeline on a classic
GPU to accelerate the S-Box and XORs in AES, but could not beat
CPU performance [4]

• After CUDA release, Manavski wrote a CUDA kernel that beat AES
performance on a CPU by 20× [10]

• Today, a major use case of SHA-256 (and other hash functions) on
GPUs is mining cryptocurrency [1, 9]

• Crypto accelerating RISC-V:
• Saarinen proposed an RISC-V ISA extension for AES that effectively
computes T-table entries at runtime [13], which Marshall et al.
recommended for 32-bit RISC-V over other proposals [11]

• The draft RISC-V cryptography extension now specifies instructions
for gathering entropy, SM3, SM4, SHA-2, AES, and some bitwise
instructions from “Bitmanip,” another draft specification [15, 2].

• We implemented a subset of this specification: instructions for
SHA-256 and AES-256, plus a bit rotation instruction

7



Draft RISC-V Cryptography Extensions Specification

Relevant instructions in draft RISC-V cryptography specification:

• SHA-256:
• sha256sum0 rd, rs1: Performs rd← Σ0(rs1)
• sha256sum1 rd, rs1: Performs rd← Σ1(rs1)
• sha256sig0 rd, rs1: Performs rd← σ0(rs1)
• sha256sig1 rd, rs1: Performs rd← σ1(rs1)

• AES-256:
• aes32esi rt, rs2, bs: Uses S-Box on byte bs of r2 and XORs
result into rt. Running 16 times will effect SubBytes; choosing
registers carefully causes ShiftRows; and loading round key into
register beforehand achieves AddRoundKey

• aes32esmi rt, rs2, bs: Performs aes32esi plus
MixColumns

• aes32dsi rt, rs2, bs: Inverse aes32esi, for decryption
• aes32dsmi rt, rs2, bs: Inverse aes32esmi, for decryption

• Bit manipulation:
• rori rd, rs1, imm: Rotate bits in rs1 right by immediate and
store in rd 8



Vortex

Vortex is an open-source GPGPU that supports RV32IMF [7].
Microarchitecture:

9



Implementation



Hardware Diagram

10



Hardware Implementation

• We add crypto execution unit
to handle all new instructions
and connect to rest of
pipeline

• Use lightweight
implementation of S-Box
logic proposed by Boyar and
Peralta [3]

• Forward S-Box is 128 gates,
16 deep [3]

• Based on draft crypto spec
reference implementation,
but pipelined to avoid
stretching cycle time

• Programmed onto an Arria 10
FPGA, generally maintaining
original clock frequency 11



Software Implementation: SHA-256

• We implement three different SHA-256 kernels for Vortex:
1. “Software”: Pure C implementation based on a naïve reading of the
SHA-2 specification [12]

2. “Hybrid”: Same as software, except with rori used for rotations in
software Σ0,Σ1, σ0, σ1 functions

3. “Native”: Same as software, except using sha256sum0,
sha256sum1, sha256sig0, sha256sig1 instructions for
Σ0,Σ1, σ0, σ1 functions

• Each evenly spreads 1MiB of CPU-generated pseudorandom
data across all available threads

12



Software Implementation: AES-256

• We implement three different Vortex kernels for AES-256 key
schedule generation:
1. “Software”: Pure C implementation based on a naïve reading of the
AES specification [6]

2. “Hybrid”: Same as software, except with rori used for the 7 calls
to RotWord made in key schedule generation

3. “Native”: Same as software, except using aes32esi and
aes32dsmi to perform the 13 InvMixColumns calls needed in
key schedule generation for the equivalent inverse cipher

4. “Native+Hybrid”: Both hybrid and native combined
• We implement two different Vortex kernels for the AES-256
cipher:
1. “Software“: Pure C implementation using a T-tables strategy [5]
2. “Native”: Same as software except that each cipher round uses the

aes32esi, aes32esmi, aes32dsi, and aes32dsmi instructions
• The cipher kernel spreads 2MiB of CPU-generated
pseudorandom data across all available threads (except CBC
encryption, which is serialized) 13



Evaluation

• We ran each kernel on an Arria 10 GX 1150 FPGA against
pseudorandom data and collected cycle counts

• The kernels ran on 16 Vortex cores, each with 4 warps of 4
threads, meaning a total of 256 threads

14



SHA-256 Results

• 256 threads hashing 512 total
messages, each of size 2 KiB, in
parallel. Total 1MiB

• Hybrid (rori) yields 1.25× speedup
• Native (sigma instructions) yields
1.60× speedup

SHA-256 Cycle Count
Speedup

15



AES-256 Key Expansion Results

• 1 thread performing key
expansion on the 256-bit key

• Native shows the only
meaningful speedup, with
3.73× for Native and 4.09×
for Native+Hybrid

• Likely because of the
expensive InvMixColumns
invocations needed for key
schedule generation with
the equivalent inverse
cipher [6]

AES-256 Key Expansion Cycle Speedup

16



AES-256 Cipher Results

• 256 threads hashing 8192
total 16-byte blocks in
parallel. Total 2MiB

• CBC gets 7.02× speedup for
encryption; however, the total
runtime is 125.7 to 161.3 times
longer than ECB encryption
(not shown)

• However, CTR sees 5.19× and
5.49× for encryption and
decryption, respectively, while
maintaining a similar runtime

AES-256 Cipher Cycle Count
Speedup

17



Physical Characteristics

We largely maintain the clock frequency of the original Vortex,
although we see more divergence with larger core counts:

Configuration Core(s) Area Usage (%) Frequency (MHz)

Baseline 1 12.86 220
+ Crypto Unit 1 13.12 218

Baseline 4 26.48 213
+ Crypto Unit 4 27.82 208

Baseline 16 80.24 192
+ Crypto Unit 16 85.78 177

We believe this may be due to synthesis or place and route issues
that future work can resolve.

18



Implementation Recommendations

• Implementing the entire
crypto draft specification may
be too expensive on a GPU;
however selectively
implementing instructions
can yield great results

• Even with an AES-accelerated
Vortex with only 4 cores, we
see a 1.42× speedup over the
original Vortex running the
software implementation on
16 cores

Estimated Speedup for AES-256 CTR Encrypt
over 16 Original Cores versus Number of

Crypto-Accelerated Cores

19



Future Work

Future work should:

• Compare performance with other GPGPUs and CPUs, with and
without native instructions

• Consider more advanced software implementations, which may
reduce speedup

• Determine if our work is vulnerable to timing attacks
• Analyze the impact on our design on the 15nm Vortex chip
described in the Vortex paper [7]

20



Thank you!

20



References i

M. K. Alkaeed, Z. Alamro, M. S. Al-Ali, H. A. Al-Mohammed, and
K. M. Khan.
Highlight on Cryptocurrencies Mining with CPUs and GPUs and
their Benefits Based on their Characteristics.
In 2020 IEEE 10th International Conference on System
Engineering and Technology (ICSET), pages 67–72, Nov. 2020.
ISSN: 2470-640X.

J. Bachmeyer, A. Baum, A. Ben, A. Bradbury, S. Braeger, R. Brussee,
M. Clark, K. Dockser, P. Donahue, D. Ferguson, F. Giesen, J. Hauser,
R. Henry, B. Hoult, P. Huang, B. Marshall, R. McCrary, L. Moore,
J. Moravec, S. Neves, M. Oberhumer, C. Olson, N. Pipenbrinck,
J. Rahmeh, X. Saw, T. Thorn, A. Tvila, A. Waterman, T. Wicki, and
C. Wolf.
RISC-V bitmanip extension.

21



References ii

https://github.com/riscv/riscv-bitmanip/
releases/tag/v0.93, Jan. 2021.
J. Boyar and R. Peralta.
A Small Depth-16 Circuit for the AES S-Box.
In D. Gritzalis, S. Furnell, and M. Theoharidou, editors,
Information Security and Privacy Research, IFIP Advances in
Information and Communication Technology, pages 287–298,
Berlin, Heidelberg, 2012. Springer.

D. L. Cook, J. Ioannidis, A. D. Keromytis, and J. Luck.
CryptoGraphics: Secret Key Cryptography Using Graphics Cards.
In A. Menezes, editor, Topics in Cryptology – CT-RSA 2005, Lecture
Notes in Computer Science, pages 334–350, Berlin, Heidelberg,
2005. Springer.

22

https://github.com/riscv/riscv-bitmanip/releases/tag/v0.93
https://github.com/riscv/riscv-bitmanip/releases/tag/v0.93


References iii

J. Daemen and V. Rijmen.
The Design of Rijndael.
Information Security and Cryptography. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2002.

M. J. Dworkin, E. B. Barker, J. R. Nechvatal, J. Foti, L. E. Bassham,
E. Roback, and J. F. D. Jr.
Advanced Encryption Standard (AES).
Nov. 2001.
Last Modified: 2021-03-01T01:03-05:00.

F. Elsabbagh, B. Tine, P. Roshan, E. Lyons, E. Kim, D. E. Shim, L. Zhu,
S. K. Lim, and H. kim.
Vortex: OpenCL Compatible RISC-V GPGPU.
arXiv:2002.12151 [cs], Feb. 2020.
arXiv: 2002.12151.

23



References iv

L. Ewing.
Effects of encryption modes on the tux image.
Wikipedia Commons.
lewing@isc.tamu.edu, produced using GIMP.

A. Kuznetsov, K. Shekhanin, A. Kolhatin, D. Kovalchuk, V. Babenko,
and I. Perevozova.
Performance of Hash Algorithms on GPUs for Use in Blockchain.
In 2019 IEEE International Conference on Advanced Trends in
Information Theory (ATIT), pages 166–170, Dec. 2019.

S. A. Manavski.
CUDA Compatible GPU as an Efficient Hardware Accelerator for
AES Cryptography.
In 2007 IEEE International Conference on Signal Processing and
Communications, pages 65–68, Nov. 2007.

24



References v

B. Marshall, G. R. Newell, D. Page, M.-J. O. Saarinen, and C. Wolf.
The design of scalar AES Instruction Set Extensions for RISC-V.
IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 109–136, 2021.

National Institute of Standards and Technology.
Secure Hash Standard (SHS).
Technical Report Federal Information Processing Standard (FIPS)
180-4, U.S. Department of Commerce, Aug. 2015.

M.-J. O. Saarinen.
A Lightweight ISA Extension for AES and SM4.
arXiv:2002.07041 [cs], Aug. 2020.
arXiv: 2002.07041.

25



References vi

B. Schneier.
Applied Cryptography: Protocols, Algorithms and Source Code in
C.
Wiley, Indianapolis, IN, 20th edition edition, Mar. 2015.

A. Zeh, A. Glew, B. Spinney, B. Marshall, D. Page, D. Atkins,
K. Dockser, M.-J. O. Saarinen, N. Menhorn, R. Newell, and C. Wolf.
RISC-V cryptographic extension proposals volume i: Scalar &
entropy source instructions.
https://github.com/riscv/riscv-crypto/releases/
tag/v0.9.0-scalar, Mar. 2021.

26

https://github.com/riscv/riscv-crypto/releases/tag/v0.9.0-scalar
https://github.com/riscv/riscv-crypto/releases/tag/v0.9.0-scalar

	Background and Related Work
	Implementation

